Modeling of EUV photoresists with a resist point spread function

نویسندگان

  • Jason P. Cain
  • Patrick Naulleau
  • Costas J. Spanos
چکیده

Extreme ultraviolet (EUV) lithography is under development for possible deployment at the 32-nm technology node. One active area of research in this field is the development of photoresists that can meet the stringent requirements (high resolution, high sensitivity, low LER, etc.) of lithography in this regime. In order to facilitate research in this and other areas related to EUV lithography, a printing station based upon the 0.3-NA Micro Exposure Tool (MET) optic was established at the Advanced Light Source, a synchrotron facility at Lawrence Berkeley National Laboratory. A resist modeling technique using a resist point spread function has been shown to have good agreement with experiments for certain EUV resists such as Shipley EUV-2D [2]. The resist point spread function is a two-dimensional function that, when convolved with the simulated aerial image for a given mask pattern and applied to a threshold function, gives a representation of the photoresist pattern remaining after development. The simplicity of this modeling approach makes it attractive for rapid modeling of photoresists for process development applications. In this work, the resist point spread functions for three current high-resolution EUV photoresists [Rohm and Haas EUV-2D, Rohm and Haas MET-1K (XP 3454C), and KRS] are extracted experimentally. This model is then used in combination with aerial image simulations (including effects of projection optic aberrations) to predict the resist pattern for a variety of test patterns. A comparison is made between these predictions and experimental results to evaluate the effectiveness of this modeling technique for newer high-resolution EUV resists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-digit-resolution nanopatterning with extreme ultraviolet light for the 2.5 nm technology node and beyond.

All nanofabrication methods come with an intrinsic resolution limit, set by their governing physical principles and instrumentation. In the case of extreme ultraviolet (EUV) lithography at 13.5 nm wavelength, this limit is set by light diffraction and is ≈3.5 nm. In the semiconductor industry, the feasibility of reaching this limit is not only a key factor for the current developments in lithog...

متن کامل

Report on EUV resist and process limitations

EUV lithography (λ=13.4nm) has been identified as one of the technologies likely to succeed to 193nm lithography for the definition of ever-smaller transistor architectures. Whether EUV in the end will outrank competing technologies for the 32nm and 22nm nodes (Hyper NA immersion, maskless, nanoimprint) and whether EUV will make it to mass production of integrated circuits will depend on both E...

متن کامل

Beyond EUV lithography: a comparative study of efficient photoresists' performance

Extreme ultraviolet (EUV) lithography at 13.5 nm is the main candidate for patterning integrated circuits and reaching sub-10-nm resolution within the next decade. Should photon-based lithography still be used for patterning smaller feature sizes, beyond EUV (BEUV) lithography at 6.x nm wavelength is an option that could potentially meet the rigid demands of the semiconductor industry. We demon...

متن کامل

Recent Progress of EUV Resist Technology in EIDEC

EUV lithography is one of the promising technologies for manufacturing devices at 16 nm half-pitch node and below. EUV resists are required to improve the resolution, line width roughness (LWR), and sensitivity. However it is generally thought that the lithographic performance is determined by the trade-off relationship among these factors. Moreover, resist outgassing is another issue with EUV ...

متن کامل

Modeling the point-spread function in helium-ion lithography.

We present here a hybrid approach to modeling helium-ion lithography that combines the power and ease-of-use of the Stopping and Range of Ions in Matter (SRIM) software with the results of recent work simulating secondary electron (SE) yield in helium-ion microscopy. This approach traces along SRIM-produced helium-ion trajectories, generating and simulating trajectories for SEs using a Monte Ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005